ver1l 0 Documentation
Release

Frank Grove

December 08, 2012

CONTENTS

CHAPTER
ONE

ABOUT

1.1 What is Open Assembly?

Open Assembly is an open source internet decision making framework. Main features include
* Create ideas and upload content and vote on the content
* Browse ideas based on collective approval, controversy, and more
 Users can create groups to host their ideas with variable settings for decision making and user inclusion
* Trust Network that will provide Open Assembly with the tools to deter Sock Puppets
* Coming Soon: Gamification concepts such as currency and classes.

The goal is to develop a fully functional Augmented Reality Game where users act out actions in the real world and are
rewarded in the virtual world, a global forum where ideas can be peer-reviewed and tested, allowing users to achieve
critical mass on the best ideas to change the world.

1.1.1 Technology

OA is built on Django-nonrel and MongoDB. We use Redis to provide caching and pub/sub. A node.js server allows
OA to host dynamic chat and notification messages. We also have provided a Solr search server configured with OA
to allow efficient and powerful search capabilities.

OA doesn’t follow the traditional Django views style. For more info check out Decoupling Design and Development

1.1.2 History

Open Assembly

1.1.3 License

Copyright (c¢) 2012, Frank Grove All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

ver1_0 Documentation, Release

* Neither the name of the Open Assembly nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL FRANK GROVE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2 Chapter 1. About

CHAPTER
TWO

INSTALLATION

2.1 Installing Development Server

First make sure you have all the requirements installed to run a development server. Some servers such as Celery and
node.js depend on Redis so they must be started in the right order.

2.1.1 Open Assembly Installation

Install Git and HG if these version control libraries isn’t already installed.

sudo apt-get install git-core mercurial

We recommend PIP and VirtualEnv to satisfy dependencies.

sudo apt-get install python-pip
sudo pip install virtualenv

Now setup the structure of the development folder and create the OA virtualenv

mkdir OA

cd OA

git clone git://github.com/fragro/Open-Assembly.git
mkdir OA_ENV

virtualenv OA_ENV

source OA_ENV/bin/activate

cd Open-Assembly/verl_0

pip install -r requirements.txt

2.1.2 The MongoDB server

This should be sufficient for debian servers.

http://git-scm.com/

ver1_0 Documentation, Release

sudo apt-get install mongodb

2.1.3 Redis Server

Go here and install the newest stable version or follow these instructions.
If you aren’t using Redis for anything else we recommend placing the redis-2.4.17 directory in the OA folder.

wget http://redis.googlecode.com/files/redis-2.4.17.tar.gz
tar xzf redis-2.4.17.tar.gz
cd redis-2.4.17

make

2.1.4 Node.js

Install from source (check here for the latest version):

wget http://nodejs.org/dist/v0.8.11/node-v0.8.11.tar.gz
tar xzf node-v0.8.1ll.tar.gz

cd node-v0.8.11

make

sudo make install

Now you need to install the dependencies. Goto Open-Assembly/oanode/ and run the command

npm install

2.1.5 Solr

If you aren’t using Solr for anything else we recommend placing the apache-solr-3.6.1 directory in the OA folder.
wget http://apache.mesi.com.ar/lucene/solr/3.6.1/apache-solr-3.6.1.tgz

tar xzf apache-solr-3.6.1.tgz

Now replace the schema.xml in your local version with OA’s schema.xml, which contains the necessary hooks to our
database. First remove the old schema. Assuming the Solr directory is in OA/

rm apache-solr-3.6.1/example/solr/conf/schema.xml

Now grab the schema from Open-Assembly/solr/conf/schema.xml

cp Open-Assembly/solr/conf/schema.xml apache-solr-3.6.1/example/solr/conf/

Now the Solr server should be ready to jive with our Django DB schema.

4 Chapter 2. Installation

http://redis.io/downloadanddownload/install
http://nodejs.org/download/

ver1_0 Documentation, Release

2.1.6 Run the Development Server

Now Open a Terminal, navigate to Open-Assembly/ver]l_0/openassembly and Run the Django Server. Remember
that if you installed your dependencies in a virtualenv using the command source OA_ENV/bin/activate you
must be in that virtual environment when running these from your shell.

python manage.py syncdb

Next we will transfer the static files from the various modules into our static_dev_server folder. You need to run this
command every time you add a new file to a static folder or add a new module with static files. More on static files in
Django.

python manage.py collectstatic

We want to rebuild the index in Solr once you have accumulated some data in your development environment, if you
want to modify the search design or code. If this is your first time starting the server you can skip this step. The
production server will take care of this with a cron job.

python manage.py rebuild_index

If syncdb fails the first time, a second try should succeed.

python manage.py runserver

Start Redis Server

Open a new terminal, go to the location where you installed redis and run the following command.

src/redis-server

WARNING: You must run the Redis server before running the node.js or Celery servers

Start Celery Server

Navigate back to the Open-Assembly/verl_O/openassembly folder where the Django server is located. OA uses
django-celery to run background tasks.

python manage.py celeryd

For more debug information in Celery inlude the DEBUG flag.

python manage.py celeryd -1 DEBUG

Start Solr Server

Navigate to the OA/ directory in a new terminal.

cd apache-solr-3.6.1/example

java —-jar start.jar

Start Node.js Server

Navigate to the Open-Assembly/oanode directory in a new terminal.

2.1. Installing Development Server 5

https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/
https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/

ver1_0 Documentation, Release

node server.js

Amazon S3 Support

To setup your OA application for images, create a file called ‘local_environment.json’ in your home folder. The
contents should look something like this, except substituted for your own variables from S3. The mountpoint
“/home/user/media/” could be any existing directory on your filesystem. S3FS_ACCESSKEY, S3FS_SECRETKEY
and S3FS_BUCKET must be setup from your S3 management console. If this is not available the django-storages will
default to HashStorage.

{"S3FS_ACCESSKEY": "ASIODUAS2T7FSAS2",
"S3FS_BUCKET": "openassembly-store",
"S3FS_MOUNTPOINT": "/home/user/media/",
"S3FS_SECRETKEY": "aos8ddas8foafkl212o0ka9sk9akdo2"

}

Usage

You should be ready to go with your dev Redis, Django, Celery, Solr, and Node.js servers up and running. Using
Chrome, Firefox, Safari, or Opera and goto Admin Setup to create an administrative account with the username
‘admin’ and password ‘password’. Now you can begin to create groups and test content to develop on.

For help in understanind the OA user interface checkout our tutorial.

2.2 Deploying Production Server

To push to production we recommend Dotcloud. It is actually much easier to push OA to production through dotcloud
when compared to setting up the development server, because the server stack is built automatically. With the following
instructions you can deploy an online version of OA for free.

2.2.1 Using Dotcloud

Dotcloud makes deploying Open Assembly easy. First create an account with dotcloud and install the CLI here

First clone from git if you did not do so setting up a development server. This leads to the development repository,
which may be unstable from time to time. We are starting a release cycle and will soon have a stable package available.

git clone git://github.com/fragro/Open-Assembly.git

Next you just need to create a sandbox app in dotcloud. Replace “’appname” with what you want to call your deploy-
ment of OA.

dotcloud create appname

First you need to specify some important environment variables from S3 and your Email host. First the required
environment variables for S3 Amazon cloud server, where image files are stored.

Amazon S3 Support

To setup your OA application for images, create a file called ‘local_environment.json’ in your home folder. The
contents should look something like this, except substituted for your own variables from S3. The mountpoint

6 Chapter 2. Installation

http://aws.amazon.com/console/
http://localhost:8000/setup_admin/
http://www.youtube.com/watch?v=_TzoR66HcYM
http://docs.dotcloud.com/0.9/firststeps/install/

ver1_0 Documentation, Release

“/home/user/media/” could be any existing directory on your filesystem. S3FS_ACCESSKEY, S3FS_SECRETKEY
and S3FS_BUCKET must be setup from your S3 management console.

dotcloud env set \
" S3FS_ACCESSKEY=MYSECRETACCESSKEY’ \
" S3FS_BUCKET=openassembly-store’ \
" S3FS_SECRETKEY=MYSECRETS3FSKEY'

Note if you do not have S3 or want to use a different method of file/image storage, please see the settings.py file in
verl_0/openassembly and change the value of DEFAULT_FILE_STORAGE to specify the storages backed you want.
For more information on the different backends, see django storages documentation .

OA also requires Setting of EMAIL_HOST_USER, EMAIL_HOST and EMAIL_PASSWORD within the dotcloud
environment variables. This allows you to easily include your own email host.

You can modify the local version before you push to dotcloud.

dotcloud env set \
"EMAIL_PASSWORD=mysecretpassword’ \
"EMATL_HOST_USER=myemail@gmail.com’ \
"EMAIL_HOST=smtp.gmail.com’ \

DEFAULT_FROM_EMAIL = env[’EMAIL_ HOST USER’]
EMAIL_USE_TLS = True

EMAIL_HOST = env[/EMAIIL_HOST']
EMAIL_HOST_USER = env[/EMAIL_HOST USER’]
EMAIIL_HOST_PASSWORD = env[’EMAIL_PASSWORD’]
EMAIL_PORT = 587

You also must set the EMAIL_PASSWORD environment variable in Dotcloud environment variables.

dotcloud var set appname EMAIL_ PASSWORD=mysecretpassword

You’ll also need to setup reCaptcha to keep those pesky spam bots off your back. Go to the reCaptcha website to get
a Public and Private key from Google. Set those environment variables the same as you would the S3 settings.

dotcloud env set \
"RECAPTCHA_PUBLIC_KEY=6LehG90SAAAAAD256YWh5x_STpHRIEIxd3TKR3is’ \
'RECAPTCHA_PRIVATE_KEY:6LehG9OSAAAAAKU—4rViXJrSGng7gImLOMMu3ae'

Then navigate to the Open-Assembly/ folder and connect/push to dotcloud.

dotcloud connect appname
dotcloud push

That’s it! You deployed your own verstion of OA live and at the end of output there should be a url. If the push fails
for some reason try again. If the push times out, go to dashboard.dotcloud.com and check on the status of your OA
install live. If you want to make your OA deployment scalable and reliable you will need to access the billing details
from Dotcloud and your app to Live, but sandbox apps will work for small groups that don’t mind using the dotcloud
URL.

2.2.2 Other Hosts

Open Assembly is configured to use dotcloud but you can use your own host fairly easily with the pip requirements
file, you’ll need to change the settings.py file in the project to reflect your own Redis/MongoDB/Node/Celery Servers.
If anyone has success deploying to a different host we would appreciate feedback on your experience.

2.2. Deploying Production Server 7

http://aws.amazon.com/console/
http://django-storages.readthedocs.org/en/latest/
http://docs.dotcloud.com/guides/environment/
http://www.google.com/recaptcha/whyrecaptcha

ver1_0 Documentation, Release

8 Chapter 2. Installation

CHAPTER
THREE

FOR DESIGNERS

3.1 Decoupling Design and Development

Open Assembly deviates from the traditional approach found in Django concerning Views. Instead of developing a
views.py function for different types of content, we have a single view that loads template files, where template tags
take the place of the logic traditionally found in views.py in a Django project.

3.1.1 So what does a template tag function look like?

Template tags are similar to Django template tags if you are familiar with those. They can be easily added to html
files. These templates are rendered before the page loads, so they can also be used to procedurally generate javascript
code. Combining template tags and javascript can be quite powerful.

This function calls pp_consensus_get from the consensustags module and displays the interest attribute
of the pirate_consensus.models.Consensus object. There are a few things happening here within the
pp_consensus_get function.

* Loads the parameter ob ject into the local context of the Python/Djano function
* Performs the logic of the function

¢ Loads the results of the function into the pp_consensus context, which the HTML designer can access
through the template

You can easily filter the data from the template tag’s context using other templatetags found in Django libraries or
elsewhere.

Example

<body>
{% pp_consensus_get object=object.pk %}
<div>
% 1f pp_consensus.consensus.interest > 1000 %}

{{ pp_consensus.consensus.interest|flo:

-~
o

else %}
{{ pp_consensus.consensus.interest|flo:

{% endif %}
</div>

https://docs.djangoproject.com/en/dev/topics/http/views/

ver1_0 Documentation, Release

{% endpp_consensus_get %}
</body>

Context Variables

As you can see the function relies on the object variable, which is loaded by the oa_cache module. For
designers all you really need to know is that the following is available to you as Django template objects in any
template you create. These are commonly used as parameters to template tag functions, or can be used to populate the
template with contextual data you are presenting to the user.

object django.db.models.Model object

user django.contrib.auth.User object of logged in user

start start integer for pagination

end end integer for pagination

dimension dimension string for sorting or filtering, usually reserved for lists
Here’s an example of how one might use these objects in a template.

<h2>{{object.summary}}</h2>
{% 1f user == object %}
Welcome home {{user.username}}.
{% pp_get_messages start=start end=end user=user %}
{% for message in pp_messages.all reversed %}
<div>
{{note.description}}
</div>
{% endfor %}
{% endpp_get_messages %}

{% endif %}

3.1.2 pp_url Links

Django allows you to drop links into your templates fairly easily. You need to use the pp_url template tag.

This block tag will produce a url that will link to the designated view or pattern name, and then will optionally
populate the request passed to that view with either a specific ORM object, or a numerical range (start...end), as
long as the pirate_core.url_middleware.UrlMiddleware is included in the projects’ MIDDLEWARE_CLASSES. Any

kwargs included in addition to “view”, “object”, “start” and “end” will be passed to redirect in order to produce the
url for the designated view.

The default value for “view” is “pp-page”, which expects that the kwarg “template” be included, passing in the name
of the template being linked to.

For example:

10 Chapter 3. For Designers

ver1_0 Documentation, Release

{% pp_url object=object template="filename.html" %}
{% pp_url template="filename.html" start=0 end=30 dimension="n" %}
{% pp_url template="filename.html" %}

Try the following from the Django shell from manage . py in the openassembly directory.

python manage.py shell

>>> from django import template
>>> from pirate_topics.models import Topic

>>> topic = Topic(summary="A test topic.", shortname="test-topic", description="test", group_members:
>>> topic.save ()

>>> load = "{% load pp_url $}"

>>> ts = "{% pp_url template=’"example.html’ object=topic %} "

>>> template.Template (load + ts).render (template.Context ({’topic’ :topic}))
u’ /p/example/k-test-topic’

>>> ts = "{% pp_url template=’example.html’ object=topic start=0 end=30 %}"
>>> template.Template (load + ts).render (template.Context ({’topic’ :topic}))
u’ /p/example/k-test-topic/s-0/e-30"

>>> ts = "{% pp_url template=’'example.html’ start=0 end=30 dimension='new’ %}"
>>> template.Template (load + ts).render (template.Context ({’topic’ :topic}))

u’ /p/example/s-0/e-30/d-new’

>>> topic.delete ()

3.1. Decoupling Design and Development 11

ver1_0 Documentation, Release

12 Chapter 3. For Designers

ver1_0 Documentation, Release

3.2 Django Template Tags

3.2.1 cachetags

3.2.2 dashboardtags
3.2.3 locationtags
3.2.4 haystacktags
3.2.5 verificationtags
3.2.6 badgetags

3.2.7 commenttags
3.2.8 consensustags
3.2.9 pp_url

3.2.10 pp_combo_form
3.2.11 show_stars
3.2.12 tag_helpers
3.2.13 argumenttags
3.2.14 flagtags

3.2.15 blobtags

3.2.16 logintags
3.2.17 messagetags
3.2.18 notificationtags
3.2.19 cani

3.2.20 groups

3.2.21 profiletags
3.2.22 reputationtags
3.2.23 feedtags

3.2.24 subscriptiontags

3.2. Wjange=Tepaplate Tags

3.2.26 sourcetags

13

ver1_0 Documentation, Release

14 Chapter 3. For Designers

15

ver1_0 Documentation, Release

CHAPTER
FOUR

4.1 openassembly Package

4.1.1 oa_cache Package
management Module

models Module

tasks Module

tests Module

views Module

Subpackages

cachetags

4.1.2 oa_dashboard Package
management Module

models Module

tasks Module

tests Module

views Module

Subpackages

dashboardtags

4.1.3 oa_location Package

models Module

DOCUMENTATION

= Madiila
search_indexes Moatie
16

views Module

Subpackages

Chapter 4. Documentation

ver1_0 Documentation, Release

base_fields = {‘form_id’: <django.forms.fields.CharField object at 0x3795310>, ‘flag’: <django.forms.fields.ChoiceFi

media

4.1. openassembly Package 17

ver1_0 Documentation, Release

18 Chapter 4. Documentation

ver1_0 Documentation, Release

models Module
tests Module
views Module
Subpackages

flagtags

4.1.13 pirate_forum Package
forms Module

management Module

models Module

search_indexes Module

tasks Module

tests Module

views Module

Subpackages

blobtags

4.1.14 pirate_login Package
backends Module

models Module

tests Module

views Module

Subpackages

logintags

4.1.15 pirate_messages Package

management Module
models Module
tasks Module

tests Module

4.1. openassembly Package
views Module

Subpackages

19

ver1_0 Documentation, Release

20 Chapter 4. Documentation

CHAPTER
FIVE

* genindex
* modindex

INDICES AND TABLES

21

ver1_0 Documentation, Release

22 Chapter 5. Indices and tables

0]

openassembly.
openassembly.
openassembly.
openassembly.
openassembly.

??

openassembly.
openassembly.
openassembly.
.pirate_messages.views, ??
openassembly.

openassembly

??

openassembly

??

openassembly.
openassembly.

PYTHON MODULE INDEX

oa_verification.views, ??
pirate_actions.views, ??
pirate_badges.views, ??
pirate_comments.views, 2?
pirate_deliberation.choices,

pirate_flags.forms, ??
pirate_flags.views, ??

pirate_forum.views, ??

pirate_permissions.views,

.pirate_profile.views,??
openassembly.

pirate_reputation.views,

pirate_social.views, ??
pirate_topics.views, ??

23

